enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxidative decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_decarboxylation

    In contrast to the relatively facile decarboxylation of β-keto acids, the decarboxylation of α-keto acids presents a mechanistic challenge. Thiamine pyrophosphate (TPP) provides the biochemical and enzymological answer. TPP is the key catalytic cofactor used by enzymes catalyzing non-oxidative and oxidative decarboxylation of α-keto acids.

  3. Oxoglutarate dehydrogenase complex - Wikipedia

    en.wikipedia.org/wiki/Oxoglutarate_dehydrogenase...

    The oxoglutarate dehydrogenase complex has the same subunit structure and thus uses the same cofactors as the pyruvate dehydrogenase complex and the branched-chain alpha-keto acid dehydrogenase complex (TTP, CoA, lipoate, FAD and NAD). Only the E3 subunit is shared in common between the three enzymes.

  4. Branched-chain alpha-keto acid dehydrogenase complex

    en.wikipedia.org/wiki/Branched-chain_alpha-keto...

    This enzyme complex catalyzes the oxidative decarboxylation of branched, short-chain alpha-ketoacids. BCKDC is a member of the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, key enzymes that function in the Krebs cycle.

  5. Decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Decarboxylation

    Decarboxylations are pervasive in biology. They are often classified according to the cofactors that catalyze the transformations. [11] Biotin-coupled processes effect the decarboxylation of malonyl-CoA to acetyl-CoA. Thiamine (T:) is the active component for decarboxylation of alpha-ketoacids, including pyruvate: T: + RC(O)CO 2 H → T=C(OH)R ...

  6. Isocitrate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Isocitrate_dehydrogenase

    Isocitrate dehydrogenase (IDH) (EC 1.1.1.42) and (EC 1.1.1.41) is an enzyme that catalyzes the oxidative decarboxylation of isocitrate, producing alpha-ketoglutarate (α-ketoglutarate) and CO 2. This is a two-step process, which involves oxidation of isocitrate (a secondary alcohol ) to oxalosuccinate (a ketone ), followed by the ...

  7. Pyruvate decarboxylase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylase

    Pyruvate decarboxylase depends on cofactors thiamine pyrophosphate (TPP) and magnesium. This enzyme should not be mistaken for the unrelated enzyme pyruvate dehydrogenase, an oxidoreductase (EC 1.2.4.1), that catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA.

  8. Thiamine pyrophosphate - Wikipedia

    en.wikipedia.org/wiki/Thiamine_pyrophosphate

    Thiamine pyrophosphate is a cofactor that is present in all living systems, in which it catalyzes several biochemical reactions. Thiamine pyrophosphate is synthesized in the cytosol and is required in the cytosol for the activity of transketolase and in the mitochondria for the activity of pyruvate-, oxoglutarate- and branched chain keto acid ...

  9. Pyruvate decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylation

    Pyruvate decarboxylation or pyruvate oxidation, also known as the link reaction (or oxidative decarboxylation of pyruvate [1]), is the conversion of pyruvate into acetyl-CoA by the enzyme complex pyruvate dehydrogenase complex. [2] [3] The reaction may be simplified as: Pyruvate + NAD + + CoA → Acetyl-CoA + NADH + CO 2