enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. x n+1 is a better approximation than x n for the root x of the function f (blue curve) If the tangent line to the curve f(x) at x = x n intercepts the x-axis at x n+1 then the slope is

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  4. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]

  5. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Linear approximations in this case are further improved when the second derivative of a, ″ (), is sufficiently small (close to zero) (i.e., at or near an inflection point). If f {\displaystyle f} is concave down in the interval between x {\displaystyle x} and a {\displaystyle a} , the approximation will be an overestimate (since the ...

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).

  7. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one.

  8. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear regression can be used to estimate the values of β 1 and β 2 from the measured data. This model is non-linear in the time variable, but it is linear in the parameters β 1 and β 2; if we take regressors x i = (x i1, x i2) = (t i, t i 2), the model takes on the standard form

  9. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.