Search results
Results from the WOW.Com Content Network
Mertens function to n = 10 000 Mertens function to n = 10 000 000. In number theory, the Mertens function is defined for all positive integers n as = = (), where () is the Möbius function. The function is named in honour of Franz Mertens.
In mathematics, the Mertens conjecture is the statement that the Mertens function is bounded by . Although now disproven, it had been shown to imply the Riemann hypothesis . It was conjectured by Thomas Joannes Stieltjes , in an 1885 letter to Charles Hermite (reprinted in Stieltjes ( 1905 )), and again in print by Franz Mertens ( 1897 ), and ...
Franz Mertens (20 March 1840 – 5 March 1927) (also known as Franciszek Mertens) was a Polish mathematician. He was born in Schroda in the Grand Duchy of Posen, Kingdom of Prussia (now Środa Wielkopolska, Poland) and died in Vienna, Austria. The Mertens function M(x) is the sum function for the Möbius function, in the theory of arithmetic ...
The Möbius function () is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. [i] [ii] [2] It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula.
The Mertens function can be expressed as a sum over Farey fractions as = + where is the Farey sequence of order n. This formula is used in the proof of the Franel–Landau theorem . [ 24 ]
In the limit, the sum of the reciprocals of the primes < n and the function ln(ln n) are separated by a constant, the Meissel–Mertens constant (labelled M above). The Meissel-Mertens constant (named after Ernst Meissel and Franz Mertens), also referred to as the Mertens constant, Kronecker's constant, Hadamard-de la Vallée-Poussin constant, or the prime reciprocal constant, is a ...
Mertens' proof does not appeal to any unproved hypothesis (in 1874), and only to elementary real analysis. It comes 22 years before the first proof of the prime number theorem which, by contrast, relies on a careful analysis of the behavior of the Riemann zeta function as a function of a complex variable. Mertens' proof is in that respect ...
Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).