Search results
Results from the WOW.Com Content Network
Swarm Intelligence-based techniques can be used in a number of applications. The U.S. military is investigating swarm techniques for controlling unmanned vehicles. The European Space Agency is thinking about an orbital swarm for self-assembly and interferometry. NASA is investigating the use of swarm technology for planetary mapping.
Several source codes are freely available. A brief video of particle swarms optimizing three benchmark functions. Simulation of PSO convergence in a two-dimensional space (Matlab). Applications of PSO. Liu, Yang (2009). "Automatic calibration of a rainfall–runoff model using a fast and elitist multi-objective particle swarm algorithm".
The collective behaviour of social insects remains a source of inspiration for researchers. The wide variety of algorithms (for optimization or not) seeking self-organization in biological systems has led to the concept of "swarm intelligence", [11] which is a very general framework in which ant colony algorithms fit.
The design of swarm robotics systems is guided by swarm intelligence principles, which promote fault tolerance, scalability, and flexibility. [1] Unlike distributed robotic systems in general, swarm robotics emphasizes a large number of robots. While various formulations of swarm intelligence principles exist, one widely recognized set includes:
The ant colony optimization algorithm is a probabilistic technique for solving computational problems that can be reduced to finding good paths through graphs.Initially proposed by Marco Dorigo in 1992 in his PhD thesis, [1] [2] the first algorithm aimed to search for an optimal path in a graph based on the behavior of ants seeking a path between their colony and a source of food.
A set of honey bees, called swarm, can successfully accomplish tasks through social cooperation. In the ABC algorithm, there are three types of bees: employed bees, onlooker bees, and scout bees. The employed bees search food around the food source in their memory; meanwhile they share the information of these food sources to the onlooker bees.
Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.
Learning classifier system; Memetic algorithms; Neuroevolution; Particle swarm optimization; Beetle antennae search; Self-organization such as self-organizing maps, competitive learning; Swarm intelligence; A thorough catalogue with many other recently proposed algorithms has been published in the Evolutionary Computation Bestiary. [11]