enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The total electric charge of the neutron is 0 e. This zero value has been tested experimentally, and the present experimental limit for the charge of the neutron is −2(8) × 10 −22 e, [6] or −3(13) × 10 −41 C. This value is consistent with zero, given the experimental uncertainties (indicated in parentheses).

  3. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

  4. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    The value for the neutron's magnetic moment was first directly measured by L. Alvarez and F. Bloch at the University of California at Berkeley in 1940. [22] Using an extension of the magnetic resonance methods developed by Rabi, Alvarez and Bloch determined the magnetic moment of the neutron to be μ n = −1.93(2) μ N. By directly measuring ...

  5. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    An up quark has electric charge ⁠+ + 2 / 3 ⁠ e, and a down quark has charge ⁠− + 1 / 3 ⁠ e, so the summed electric charges of proton and neutron are +e and 0, respectively. [a] Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is ...

  6. Charge number - Wikipedia

    en.wikipedia.org/wiki/Charge_number

    Charge number (denoted z) is a quantized and dimensionless quantity derived from electric charge, with the quantum of electric charge being the elementary charge (e, constant). The charge number equals the electric charge ( q , in coulombs ) divided by the elementary charge: z = q / e .

  7. Neutron electric dipole moment - Wikipedia

    en.wikipedia.org/wiki/Neutron_electric_dipole_moment

    The neutron electric dipole moment (nEDM), denoted d n, is a measure for the distribution of positive and negative charge inside the neutron. A nonzero electric dipole moment can only exist if the centers of the negative and positive charge distribution inside the particle do not coincide. So far, no neutron EDM has been found.

  8. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    where A = Atomic mass number (the number of protons Z, plus the number of neutrons N) and r 0 = 1.25 fm = 1.25 × 10 −15 m. In this equation, the "constant" r 0 varies by 0.2 fm, depending on the nucleus in question, but this is less than 20% change from a constant.

  9. Eightfold way (physics) - Wikipedia

    en.wikipedia.org/wiki/Eightfold_way_(physics)

    Particles along the same horizontal line share the same strangeness, s, while those on the same left-leaning diagonals share the same charge, q (given as multiples of the elementary charge). In physics, the eightfold way is an organizational scheme for a class of subatomic particles known as hadrons that led to the development of the quark model.