enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

  3. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The total electric charge of the neutron is 0 e. This zero value has been tested experimentally, and the present experimental limit for the charge of the neutron is −2(8) × 10 −22 e, [6] or −3(13) × 10 −41 C. This value is consistent with zero, given the experimental uncertainties (indicated in parentheses).

  4. C parity - Wikipedia

    en.wikipedia.org/wiki/C_parity

    In physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation. Charge conjugation changes the sign of all quantum charges (that is, additive quantum numbers ), including the electrical charge , baryon number and lepton number , and ...

  5. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    An up quark has electric charge ⁠+ + 2 / 3 ⁠ e, and a down quark has charge ⁠− + 1 / 3 ⁠ e, so the summed electric charges of proton and neutron are +e and 0, respectively. [a] Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is ...

  6. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Charge is quantized: it comes in integer multiples of individual small units called the elementary charge, e, about 1.602 × 10 −19 C, [1] which is the smallest charge that can exist freely. Particles called quarks have smaller charges, multiples of ⁠ 1 / 3 ⁠ e , but they are found only combined in particles that have a charge that is an ...

  7. Charge number - Wikipedia

    en.wikipedia.org/wiki/Charge_number

    Charge number (denoted z) is a quantized and dimensionless quantity derived from electric charge, with the quantum of electric charge being the elementary charge (e, constant). The charge number equals the electric charge ( q , in coulombs ) divided by the elementary charge: z = q / e .

  8. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    The existence of the neutron's magnetic moment and the large value for the proton magnetic moment indicate that nucleons are not elementary particles. For an elementary particle to have an intrinsic magnetic moment, it must have both spin and electric charge. The nucleons have spin ħ/2, but the neutron has no net

  9. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    Conversely, the proton-proton and neutron-neutron bound states are unstable and therefore rarely found in nature. The deuteron (the simplest p-n pair) does not have a spherical shape owing to its quadrupole moment. [5] The transverse charge density of the deuteron now confirms a prolate or elongated shape. [25]