enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    The number of perfect matchings in a complete graph K n (with n even) is given by the double factorial (n − 1)!!. [13] The numbers of matchings in complete graphs, without constraining the matchings to be perfect, are given by the telephone numbers. [14] The number of perfect matchings in a graph is also known as the hafnian of its adjacency ...

  3. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    Kőnig had announced in 1914 and published in 1916 the results that every regular bipartite graph has a perfect matching, [11] and more generally that the chromatic index of any bipartite graph (that is, the minimum number of matchings into which it can be partitioned) equals its maximum degree [12] – the latter statement is known as Kőnig's ...

  4. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    However, counting the number of perfect matchings, even in bipartite graphs, is #P-complete. This is because computing the permanent of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given matrix as its biadjacency matrix.

  5. Ruzsa–Szemerédi problem - Wikipedia

    en.wikipedia.org/wiki/Ruzsa–Szemerédi_problem

    Equivalently it asks for the maximum number of edges in a balanced bipartite graph whose edges can be partitioned into a linear number of induced matchings, or the maximum number of triples one can choose from points so that every six points contain at most two triples.

  6. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]

  7. Edmonds matrix - Wikipedia

    en.wikipedia.org/wiki/Edmonds_matrix

    One application of the Edmonds matrix of a bipartite graph is that the graph admits a perfect matching if and only if the polynomial det(A ij) in the x ij is not identically zero. Furthermore, the number of perfect matchings is equal to the number of monomials in the polynomial det( A ), and is also equal to the permanent of A {\displaystyle A} .

  8. Today's Wordle Hint, Answer for #1259 on Friday, November 29 ...

    www.aol.com/lifestyle/todays-wordle-hint-answer...

    Today's Wordle Answer for #1259 on Friday, November 29, 2024. Today's Wordle answer on Friday, November 29, 2024, is HIPPO. How'd you do? Next: Catch up on other Wordle answers from this week.

  9. Bregman–Minc inequality - Wikipedia

    en.wikipedia.org/wiki/Bregman–Minc_inequality

    The number of possible perfect matchings in a bipartite graph with equal-sized partitions can therefore be estimated via the degrees of the vertices of any of the two partitions. [ 7 ] Related statements