Search results
Results from the WOW.Com Content Network
The number of perfect matchings in a complete graph K n (with n even) is given by the double factorial (n − 1)!!. [13] The numbers of matchings in complete graphs, without constraining the matchings to be perfect, are given by the telephone numbers. [14] The number of perfect matchings in a graph is also known as the hafnian of its adjacency ...
Kőnig had announced in 1914 and published in 1916 the results that every regular bipartite graph has a perfect matching, [11] and more generally that the chromatic index of any bipartite graph (that is, the minimum number of matchings into which it can be partitioned) equals its maximum degree [12] – the latter statement is known as Kőnig's ...
However, counting the number of perfect matchings, even in bipartite graphs, is #P-complete. This is because computing the permanent of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given matrix as its biadjacency matrix.
Equivalently it asks for the maximum number of edges in a balanced bipartite graph whose edges can be partitioned into a linear number of induced matchings, or the maximum number of triples one can choose from points so that every six points contain at most two triples.
A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]
One application of the Edmonds matrix of a bipartite graph is that the graph admits a perfect matching if and only if the polynomial det(A ij) in the x ij is not identically zero. Furthermore, the number of perfect matchings is equal to the number of monomials in the polynomial det( A ), and is also equal to the permanent of A {\displaystyle A} .
Today's Wordle Answer for #1259 on Friday, November 29, 2024. Today's Wordle answer on Friday, November 29, 2024, is HIPPO. How'd you do? Next: Catch up on other Wordle answers from this week.
The number of possible perfect matchings in a bipartite graph with equal-sized partitions can therefore be estimated via the degrees of the vertices of any of the two partitions. [ 7 ] Related statements