enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/EulerBernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams.

  3. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.

  4. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    Simple beam bending is often analyzed with the Euler–Bernoulli beam equation. The conditions for using simple bending theory are: [4] The beam is subject to pure bending. This means that the shear force is zero, and that no torsional or axial loads are present. The material is isotropic (or orthotropic) and homogeneous.

  5. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The bending moment at a particular cross section varies linearly with the second derivative of the deflected shape at that location. The beam is composed of an isotropic material. The applied load is orthogonal to the beam's neutral axis and acts in a unique plane. A simplified version of Euler–Bernoulli beam equation is:

  6. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The resulting equation is of 4th order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial derivative present. Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted ...

  7. Plate theory - Wikipedia

    en.wikipedia.org/wiki/Plate_theory

    The Kirchhoff–Love theory is an extension of Euler–Bernoulli beam theory to thin plates. The theory was developed in 1888 by Love [ 2 ] using assumptions proposed by Kirchhoff. It is assumed that a mid-surface plane can be used to represent the three-dimensional plate in two-dimensional form.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 2: Column effective length factors for Euler's critical load. In practical design, it is recommended to increase the factors as shown above. The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only.