Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.
Morey et al. [27] point out that several of these confidence procedures, including the one for ω 2, have the property that as the F statistic becomes increasingly small—indicating misfit with all possible values of ω 2 —the confidence interval shrinks and can even contain only the single value ω 2 = 0; that is, the CI is infinitesimally ...
The F table serves as a reference guide containing critical F values for the distribution of the F-statistic under the assumption of a true null hypothesis. It is designed to help determine the threshold beyond which the F statistic is expected to exceed a controlled percentage of the time (e.g., 5%) when the null hypothesis is accurate.
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
This distribution of ω is the fiducial distribution which may be used to form fiducial intervals that represent degrees of belief. The calculation is identical to the pivotal method for finding a confidence interval, but the interpretation is different. In fact older books use the terms confidence interval and fiducial interval interchangeably.
The confidence region is calculated in such a way that if a set of measurements were repeated many times and a confidence region calculated in the same way on each set of measurements, then a certain percentage of the time (e.g. 95%) the confidence region would include the point representing the "true" values of the set of variables being estimated.
where f is the density function, and F −1 is the quantile function associated with F. One of the first people to mention and prove this result was Frederick Mosteller in his seminal paper in 1946. [8] Further research led in the 1960s to the Bahadur representation which provides information about the errorbounds.