Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution, a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [,].
The beta family includes the beta of the first and second kind [7] (B1 and B2, where the B2 is also referred to as the Beta prime), which correspond to c = 0 and c = 1, respectively. Setting =, = yields the standard two-parameter beta distribution.
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables: [1] = = (+,),where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and (,) is the incomplete beta function.
Regression beta coefficient estimates from the Liang-Zeger GEE are consistent, unbiased, and asymptotically normal even when the working correlation is misspecified, under mild regularity conditions. GEE is higher in efficiency than generalized linear models (GLMs) in the presence of high autocorrelation. [ 1 ]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The purpose of the comparison is to determine which candidate model is most appropriate for statistical inference. Common criteria for comparing models include the following: R 2, Bayes factor, and the likelihood-ratio test together with its generalization relative likelihood. For more on this topic, see statistical model selection.