Search results
Results from the WOW.Com Content Network
A flagellum (/ f l ə ˈ dʒ ɛ l əm /; pl.: flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores , and from a wide range of microorganisms to provide motility.
Flagella in eukaryotes are supported by microtubules in a characteristic arrangement, with nine fused pairs surrounding two central singlets. These arise from a basal body. In some flagellates, flagella direct food into a cytostome or mouth, where food is ingested. Flagella role in classifying eukaryotes.
The evolution of flagella is of great interest to biologists because the three known varieties of flagella – (eukaryotic, bacterial, and archaeal) each represent a sophisticated cellular structure that requires the interaction of many different systems.
Schematic of the eukaryotic flagellum. 1-axoneme, 2-cell membrane, 3-IFT (Intraflagellar transport), 4-Basal body, 5-Cross section of flagellum, 6-Triplets of microtubules of basal body. Longitudinal section through the flagella area in Chlamydomonas reinhardtii. In the cell apex is the basal body that is the anchoring site for a flagellum.
Inside a cilium and a flagellum is a microtubule-based cytoskeleton called the axoneme. The axoneme of a primary cilium typically has a ring of nine outer microtubule doublets (called a 9+0 axoneme), and the axoneme of a motile cilium has two central microtubules in addition to the nine outer doublets (called a 9+2 axoneme).
Helicobacter pylori electron micrograph, showing multiple flagella on the cell surface. The structure of flagellin is responsible for the helical shape of the flagellar filament, which is important for its proper function. [4] It is transported through the center of the filament to the tip where it polymerases spontaneously into a part of the ...
Cilia and flagella always extend directly from a MTOC, in this case termed the basal body. The action of the dynein motor proteins on the various microtubule strands that run along a cilium or flagellum allows the organelle to bend and generate force for swimming, moving extracellular material, and other roles.
In regards to function, flagella play a significant role in the excretory nature of solenocytes. These motile appendages extend from the solenocyte membrane and utilize the support of an axial filament (or axoneme), basal body, as well as numerous microtubules. [6] That said, the stability of the flagellum is crucial to its motility.