enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    The cyclic redundancy check (CRC) is a check of the remainder after division in the ring of polynomials over GF (2) (the finite field of integers modulo 2). That is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around. Any string of bits can be interpreted as the coefficients of a ...

  3. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    Computation of cyclic redundancy checks. Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace ...

  4. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    Fletcher's checksum. The Fletcher checksum is an algorithm for computing a position-dependent checksum devised by John G. Fletcher (1934–2012) at Lawrence Livermore Labs in the late 1970s. [1] The objective of the Fletcher checksum was to provide error-detection properties approaching those of a cyclic redundancy check but with the lower ...

  5. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [1][2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated ...

  6. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  7. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  8. Equivalence class - Wikipedia

    en.wikipedia.org/wiki/Equivalence_class

    An equivalence relation on a set is a binary relation on satisfying the three properties: [1] for all (reflexivity), implies for all (symmetry), if and then for all (transitivity). The equivalence class of an element is defined as [2] The word "class" in the term "equivalence class" may generally be considered as a synonym of "set", although ...

  9. Diffie–Hellman key exchange - Wikipedia

    en.wikipedia.org/wiki/Diffie–Hellman_key_exchange

    The simplest and the original implementation, [2] later formalized as Finite Field Diffie–Hellman in RFC 7919, [9] of the protocol uses the multiplicative group of integers modulo p, where p is prime, and g is a primitive root modulo p.