enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    If d is the greatest common divisor of a and m then the linear congruence ax ≡ b (mod m) has solutions if and only if d divides b. If d divides b, then there are exactly d solutions. [7] A modular multiplicative inverse of an integer a with respect to the modulus m is a solution of the linear congruence ().

  3. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  4. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Horner's method. In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation. Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian ...

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    The parentheses mean that (mod m) applies to the entire equation, not just to the right-hand side (here, b). This notation is not to be confused with the notation b mod m (without parentheses), which refers to the modulo operation, the remainder of b when divided by m: that is, b mod m denotes the unique integer r such that 0 ≤ r < m and r ...

  6. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The exact solution of the differential equation is () =, so () =. Although the approximation of the Euler method was not very precise in this specific case, particularly due to a large value step size h {\displaystyle h} , its behaviour is qualitatively correct as the figure shows.

  7. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Stirling's approximation. Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [1] Given a set of n + 1 data points , with no two the same, a polynomial function is said to interpolate the data if for each .

  9. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    For algorithms describing how to calculate the remainder, see division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder . [ 2 ] The integer a is either a multiple of d , or lies in the interval between consecutive multiples of d , namely, q⋅d and ( q + 1) d (for positive q ).