Search results
Results from the WOW.Com Content Network
Equirectangular projection of the world; the standard parallel is the equator (plate carrée projection). Equirectangular projection with Tissot's indicatrix of deformation and with the standard parallels lying on the equator True-colour satellite image of Earth in equirectangular projection Height map of planet Earth at 2km per pixel, including oceanic bathymetry information, normalized as 8 ...
The intersection of the parallels with the outer circle can be used as a de facto protractor for plotting a point's longitude as the angle in the polar projection. The Schmidt net's horizontal axis can then be used as a scalar measuring device to convert the point's latitude (relative to the pole) into a radial distance from the centre of the ...
Boundary is a circle. All parallels and meridians are circular arcs. Usually clipped near 80°N/S. Standard world projection of the NGS in 1922–1988. c. 150: Equidistant conic = simple conic: Conic Equidistant Based on Ptolemy's 1st Projection Distances along meridians are conserved, as is distance along one or two standard parallels. [3] 1772
The distance from the center point to another projected point ρ is the arc length along a great circle between them on the globe. By this description, then, the point on the plane specified by ( θ , ρ ) will be projected to Cartesian coordinates:
The maturation of complex analysis led to general techniques for conformal mapping, where points of a flat surface are handled as numbers on the complex plane.While working at the United States Coast and Geodetic Survey, the American philosopher Charles Sanders Peirce published his projection in 1879, [2] having been inspired by H. A. Schwarz's 1869 conformal transformation of a circle onto a ...
Circular layouts are a good fit for communications network topologies such as star or ring networks, [1] and for the cyclic parts of metabolic networks. [2] For graphs with a known Hamiltonian cycle, a circular layout allows the cycle to be depicted as the circle, and in this way circular layouts form the basis of the LCF notation for Hamiltonian cubic graphs.
The equator, a circle of latitude that divides a spheroid, such as Earth, into the northern and southern hemispheres. On Earth, it is an imaginary line located at 0 degrees latitude . 0°
Positions on the great circle of radius are parametrized by arc length measured from the northward crossing of the equator. The great ellipse has a semi-axes a {\displaystyle a} and a 1 − e 2 cos 2 γ 0 {\displaystyle a{\sqrt {1-e^{2}\cos ^{2}\gamma _{0}}}} , where γ 0 {\displaystyle \gamma _{0}} is the great-circle azimuth at the ...