enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vitali convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Vitali_convergence_theorem

    Let (,,) be a measure space, i.e. : [,] is a set function such that () = and is countably-additive. All functions considered in the sequel will be functions :, where = or .We adopt the following definitions according to Bogachev's terminology.

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    Indeed, two Lebesgue-measurable functions may be constructed in such a way as to make their composition non-Lebesgue-measurable. The (pointwise) supremum, infimum, limit superior, and limit inferior of a sequence (viz., countably many) of real-valued measurable functions are all measurable as well. [1] [4]

  4. Locally integrable function - Wikipedia

    en.wikipedia.org/wiki/Locally_integrable_function

    Measure and integration (as the English translation of the title reads) is a definitive monograph on integration and measure theory: the treatment of the limiting behavior of the integral of various kind of sequences of measure-related structures (measurable functions, measurable sets, measures and their combinations) is somewhat conclusive.

  5. Convergence in measure - Wikipedia

    en.wikipedia.org/wiki/Convergence_in_measure

    If X = [a,b] ⊆ R and μ is Lebesgue measure, there are sequences (g n) of step functions and (h n) of continuous functions converging globally in measure to f. If f and f n (n ∈ N) are in L p (μ) for some p > 0 and (f n) converges to f in the p-norm, then (f n) converges to f globally in measure. The converse is false.

  6. Uniform integrability - Wikipedia

    en.wikipedia.org/wiki/Uniform_integrability

    Uniform integrability is an extension to the notion of a family of functions being dominated in which is central in dominated convergence. Several textbooks on real analysis and measure theory use the following definition: [1] [2] Definition A: Let (,,) be a positive measure space.

  7. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The integral of a non-negative general measurable function is then defined as an appropriate supremum of approximations by simple functions, and the integral of a (not necessarily positive) measurable function is the difference of two integrals of non-negative measurable functions. [1]

  8. Fatou's lemma - Wikipedia

    en.wikipedia.org/wiki/Fatou's_lemma

    Let f 1, f 2, . . . be a sequence of extended real-valued measurable functions defined on a measure space (S,Σ,μ). If there exists a non-negative integrable function g on S such that f n ≤ g for all n, then

  9. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L 1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis .