Search results
Results from the WOW.Com Content Network
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.
For example, points (2, 0), (2, 1), and (2, 2) lie along the perimeter of a square and belong to the set of vectors whose sup norm is 2. In mathematical analysis , the uniform norm (or sup norm ) assigns, to real- or complex -valued bounded functions f {\displaystyle f} defined on a set S {\displaystyle S} , the non-negative number
An example of such a space is the Fréchet space (), whose definition can be found in the article on spaces of test functions and distributions, because its topology is defined by a countable family of norms but it is not a normable space because there does not exist any norm ‖ ‖ on () such that the topology this norm induces is equal to .
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .
Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics , science , and engineering for representing complex concepts and properties in a concise ...
A mathematical markup language is a computer notation for representing mathematical formulae, based on mathematical notation. Specialized markup languages are necessary because computers normally deal with linear text and more limited character sets (although increasing support for Unicode is obsoleting very simple uses). A formally ...
In mathematics, , the (real or complex) vector space of bounded sequences with the supremum norm, and = (,,), the vector space of essentially bounded measurable functions with the essential supremum norm, are two closely related Banach spaces. In fact the former is a special case of the latter.