Search results
Results from the WOW.Com Content Network
Sensor slant range Sensor slant range (1) In radio electronics, especially radar terminology, slant range or slant distance is the distance along the relative direction between two points. If the two points are at the same level (relative to a specific datum), the slant distance equals the horizontal distance.
Typically, the range of an elevated target is considered in terms of the slant range, incorporating both the horizontal distance and the elevation distance (possibly negative, i.e. downhill), as when a rangefinder is used to determine the distance to target. The slant range is not compatible with standard ballistics tables for estimating bullet ...
In aviation, distance measuring equipment (DME) is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required.
Range information is functionally identical to the method provided by civilian DME: pairs of 3.5 microsecond (μs) pulses (measured edge-to-edge at 50% modulation strength) from an aircraft are repeated by the station being interrogated, using the round-trip time to calculate slant-range distance.
Range: Distance along the plane established by the horizon Slant Range: Distance along the true line of sight True: Angle in earth coordinates with true north as the reference Relative: Angle in deck-plane coordinates using vehicle heading as the reference Rectangular: Cartesian coordinates typically known as X, Y, and Z Spherical
Range ambiguity occurs when the time taken for an echo to return from a target is greater than the pulse repetition period (T); if the interval between transmitted pulses is 1000 microseconds, and the return-time of a pulse from a distant target is 1200 microseconds, the apparent distance of the target is only 200 microseconds.
Calculate the slant range, the distance from the observer point to the orbiting body at their ... (which is the slant distance multiplied by the slant direction ...
Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.