Search results
Results from the WOW.Com Content Network
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
Gödel's second incompleteness theorem; Goodstein's theorem; Green's theorem (to do) Green's theorem when D is a simple region; Heine–Borel theorem; Intermediate value theorem; Itô's lemma; Kőnig's lemma; Kőnig's theorem (set theory) Kőnig's theorem (graph theory) Lagrange's theorem (group theory) Lagrange's theorem (number theory ...
Noether's theorem (Lie groups, calculus of variations, differential invariants, physics) Noether's second theorem (calculus of variations, physics) Noether's theorem on rationality for surfaces (algebraic surfaces) Non-squeezing theorem (symplectic geometry) Norton's theorem (electrical networks) Novikov's compact leaf theorem
Retrieved from "https://en.wikipedia.org/w/index.php?title=Basic_proportionality_theorem&oldid=1089918910"
Given such a constant k, the proportionality relation ∝ with proportionality constant k between two sets A and B is the equivalence relation defined by {(,): =}. A direct proportionality can also be viewed as a linear equation in two variables with a y -intercept of 0 and a slope of k > 0, which corresponds to linear growth .
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof editor, or other interface , with which a human can guide the search for proofs, the details of which are ...
To show that a system S is required to prove a theorem T, two proofs are required. The first proof shows T is provable from S; this is an ordinary mathematical proof along with a justification that it can be carried out in the system S. The second proof, known as a reversal, shows that T itself implies S; this proof is carried out in the base ...
Similar triangles provide the basis for many synthetic (without the use of coordinates) proofs in Euclidean geometry. Among the elementary results that can be proved this way are: the angle bisector theorem, the geometric mean theorem, Ceva's theorem, Menelaus's theorem and the Pythagorean theorem.