Search results
Results from the WOW.Com Content Network
Newton's law of motion for a particle of mass m written in vector form is: = , where F is the vector sum of the physical forces applied to the particle and a is the absolute acceleration (that is, acceleration in an inertial frame) of the particle, given by: = , where r is the position vector of the particle (not to be confused with radius, as ...
In physics, a force field is a vector field corresponding with a non-contact force acting on a particle at various positions in space. Specifically, a force field is a vector field F {\displaystyle \mathbf {F} } , where F ( r ) {\displaystyle \mathbf {F} (\mathbf {r} )} is the force that a particle would feel if it were at the position r ...
A diagram of Central forces. In classical mechanics, a central force on an object is a force that is directed towards or away from a point called center of force. [a] [1]: 93 = = | | ^ where is the force, F is a vector valued force function, F is a scalar valued force function, r is the position vector, ||r|| is its length, and ^ = / ‖ ‖ is the corresponding unit vector.
Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has charge in place of mass and a ...
It can also be called mass-specific weight (weight per unit mass), as the weight of an object is equal to the magnitude of the gravity force acting on it. The g-force is an instance of specific force measured in units of the standard gravity (g) instead of m/s², i.e., in multiples of g (e.g., "3 g").
The SI unit of force is the newton (N), and force is often represented by the symbol F. Force plays an important role in classical mechanics. The concept of force is central to all three of Newton's laws of motion. Types of forces often encountered in classical mechanics include elastic, frictional, contact or "normal" forces, and gravitational.
A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...
They are obtained from the applied forces F i, i = 1, …, n, acting on a system that has its configuration defined in terms of generalized coordinates. In the formulation of virtual work , each generalized force is the coefficient of the variation of a generalized coordinate.