Search results
Results from the WOW.Com Content Network
For example: An acceleration of 1 g equates to a rate of change in velocity of approximately 35 km/h (22 mph) for each second that elapses. Therefore, if an automobile is capable of braking at 1 g and is traveling at 35 km/h, it can brake to a standstill in one second and the driver will experience a deceleration of 1 g. The automobile ...
During straight and level flight, the load factor is +1 if the aircraft is flown "the right way up", [2]: 90 whereas it becomes −1 if the aircraft is flown "upside-down" (inverted). In both cases the lift vector is the same (as seen by an observer on the ground), but in the latter the vertical axis of the aircraft points downwards, making the ...
At the latitude of 10°, when a ray starts at 5 km altitude with an elevation angle of −1° to hit a target at the same longitude but at latitude 8.84° and altitude 30 km. At 22.5 GHz, the results are: The linear path is the highest on the figure, the eikonal is the lowest. [clarification needed]
Values of ρ b of b = 1 through b = 6 are obtained from the application of the appropriate member of the pair equations 1 and 2 for the case when h = h b+1. [ 2 ] In these equations, g 0 , M and R * are each single-valued constants, while ρ , L , T and h are multi-valued constants in accordance with the table below.
The equation that relates the two altitudes are (where z is the geometric altitude, h is the geopotential altitude, and r 0 = 6,356,766 m in this model): = Note that the Lapse Rates cited in the table are given as °C per kilometer of geopotential altitude, not geometric altitude.
The increase in altitude necessary for P or ρ to drop to 1/e of its initial value is called the scale height: H = R T M g 0 {\displaystyle H={\frac {RT}{Mg_{0}}}} where R is the ideal gas constant, T is temperature, M is average molecular weight, and g 0 is the gravitational acceleration at the planet's surface.
V x increases with altitude and V Y decreases with altitude until they converge at the airplane's absolute ceiling, the altitude above which the airplane cannot climb in steady flight. The Cessna 172 is a four-seat aircraft. At maximum weight it has a V Y of 75 kn (139 km/h) indicated airspeed [4] providing a rate of climb of 721 ft/min (3.66 m/s).
G = Gravitational constant ≈ 6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2 [15] r = the radial cylindrical coordinate for the distance from the center of the star or centrally condensed object z = the height/altitude cylindrical coordinate for the distance from the disk midplane (or center of the star) M * = the mass of the star/centrally ...