enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transesterification - Wikipedia

    en.wikipedia.org/wiki/Transesterification

    Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. [1] Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile.

  3. Ester hydrolysis - Wikipedia

    en.wikipedia.org/wiki/Ester_hydrolysis

    Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion. Hydroxide ion attacks the carbonyl carbon to give a tetrahedral intermediate, which then expels an alkoxide ion. The resulting carboxylic acid quickly protonates the alkoxide ion to give a carboxylate ion and an alcohol. [1]

  4. Saponification - Wikipedia

    en.wikipedia.org/wiki/Saponification

    The hydroxide anion adds to the carbonyl group of the ester. The immediate product is called an orthoester. Saponification part I. Expulsion of the alkoxide generates a carboxylic acid: Saponification part II. The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol:

  5. Shiina esterification - Wikipedia

    en.wikipedia.org/wiki/Shiina_Esterification

    The hydroxyl group in the alcohol attacks its host molecule through intermolecular nucleophilic substitution, and at the same time, carboxylate anion, derived from 2-methyl-6-nitrobenzoic acid, acts as a deprotonation agent, promoting the progression of the esterification and producing the desired carboxylic ester. To balance the reaction, each ...

  6. Carbonyl reduction - Wikipedia

    en.wikipedia.org/wiki/Carbonyl_reduction

    The final step in the reduction of carboxylic acids and esters is hydrolysis of the aluminium alcoxide. [8] Esters (and amides) are more easily reduced than the parent carboxylic acids. Their reduction affords alcohols and amines, respectively. [9] The idealized equation for the reduction of an ester by lithium aluminium hydride is:

  7. Fischer–Speier esterification - Wikipedia

    en.wikipedia.org/wiki/Fischer–Speier...

    The primary advantages of Fischer esterification compared to other esterification processes are based on its relative simplicity. Straightforward acidic conditions can be used if acid-sensitive functional groups are not an issue; sulfuric acid can be used; weaker acids can be used with a tradeoff of longer reaction times.

  8. Ortho ester - Wikipedia

    en.wikipedia.org/wiki/Ortho_ester

    In organic chemistry, an ortho ester is a functional group containing three alkoxy groups attached to one carbon atom, i.e. with the general formula RC(OR') 3. Orthoesters may be considered as products of exhaustive alkylation of unstable orthocarboxylic acids and it is from these that the name 'ortho ester' is derived.

  9. Mitsunobu reaction - Wikipedia

    en.wikipedia.org/wiki/Mitsunobu_reaction

    The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.