Search results
Results from the WOW.Com Content Network
Relative density can be calculated directly by measuring the density of a sample and dividing it by the (known) density of the reference substance. The density of the sample is simply its mass divided by its volume. Although mass is easy to measure, the volume of an irregularly shaped sample can be more difficult to ascertain.
Density is an intensive property in that increasing the amount of a substance does not increase its density; rather it increases its mass. Other conceptually comparable quantities or ratios include specific density , relative density (specific gravity) , and specific weight .
Vapour density is the density of a vapour in relation to that of hydrogen. It may be defined as mass of a certain volume of a substance divided by mass of same volume of hydrogen. vapour density = mass of n molecules of gas / mass of n molecules of hydrogen gas . vapour density = molar mass of gas / molar mass of H 2
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely, multiply by 0.001. Specific volume is inversely proportional to density.
A special type of area density is called column density (also columnar mass density or simply column density), denoted ρ A or σ. It is the mass of substance per unit area integrated along a path; [ 1 ] It is obtained integrating volumetric density ρ {\displaystyle \rho } over a column: [ 2 ] σ = ∫ ρ d s . {\displaystyle \sigma =\int \rho ...
Change in volume with increasing ethanol fraction. The molar volume of a substance i is defined as its molar mass divided by its density ρ i 0: , = For an ideal mixture containing N components, the molar volume of the mixture is the weighted sum of the molar volumes of its individual components.
For any substance, the number density can be expressed in terms of its amount concentration c (in mol/m 3) as = where N A is the Avogadro constant. This is still true if the spatial dimension unit, metre, in both n and c is consistently replaced by any other spatial dimension unit, e.g. if n is in cm −3 and c is in mol/cm 3 , or if n is in L ...