Search results
Results from the WOW.Com Content Network
The Kernel-based Hough transform uses the same (,) parameterization proposed by Duda and Hart but operates on clusters of approximately collinear pixels. For each cluster, votes are cast using an oriented elliptical-Gaussian kernel that models the uncertainty associated with the best-fitting line with respect to the corresponding cluster.
A representative book on research into machine learning during the 1960s was Nilsson's book on Learning Machines, dealing mostly with machine learning for pattern classification. [15] Interest related to pattern recognition continued into the 1970s, as described by Duda and Hart in 1973. [ 16 ]
While at SRI International, Duda and Peter E. Hart were the authors of "Pattern Classification and Scene Analysis", originally published in 1973. This classic text is a widely cited reference, and the first edition was in print for over 25 years until being superseded by the second edition in 2000. [2] Duda is an IEEE Fellow and a AAAI Fellow. [3]
Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
In machine learning, pattern recognition is the assignment of a label to a given input value. In statistics, discriminant analysis was introduced for this same purpose in 1936. An example of pattern recognition is classification , which attempts to assign each input value to one of a given set of classes (for example, determine whether a given ...
In machine learning, a neural network is an artificial mathematical model used to approximate nonlinear functions. While early artificial neural networks were physical machines, [ 3 ] today they are almost always implemented in software .
In this case, player allocates higher weight to the actions that had a better outcome and choose his strategy relying on these weights. In machine learning, Littlestone applied the earliest form of the multiplicative weights update rule in his famous winnow algorithm, which is similar to Minsky and Papert's earlier perceptron learning algorithm ...