Search results
Results from the WOW.Com Content Network
Central to PK/PD models is the concentration-effect or exposure-response relationship. [4] A variety of PK/PD modeling approaches exist to describe exposure-response relationships . PK/PD relationships can be described by simple equations such as linear model, Emax model or sigmoid Emax model . [ 5 ]
Pharmacodynamics (PD) is the study of the biochemical and physiologic effects of drugs (especially pharmaceutical drugs). The effects can include those manifested within animals (including humans), microorganisms , or combinations of organisms (for example, infection ).
Pharmacokinetics is based on mathematical modeling that places great emphasis on the relationship between drug plasma concentration and the time elapsed since the drug's administration. Pharmacokinetics is the study of how an organism affects the drug, whereas pharmacodynamics (PD) is the study of
In practice, the drug concentration is measured at certain discrete points in time and the trapezoidal rule is used to estimate AUC. In pharmacology, the area under the plot of plasma concentration of a drug versus time after dosage (called “area under the curve” or AUC) gives insight into the extent of exposure to a drug and its clearance ...
A few drugs such as alcohol are absorbed by the lining of the stomach, and therefore tend to take effect much more quickly than the vast majority of oral medications which are absorbed in the small intestine. Gastric emptying time can vary from 0 to 3 hours, [2] and therefore plays a major role in onset of action for orally administered drugs ...
The plateau principle is a mathematical model or scientific law originally developed to explain the time course of drug action (pharmacokinetics). [1] The principle has wide applicability in pharmacology, physiology, nutrition, biochemistry, and system dynamics.
Time course of drug plasma concentrations over 96 hours following oral administrations every 24 hours (τ). Absorption half-life 1 h, elimination half-life 12 h. Biological half-life ( elimination half-life , pharmacological half-life ) is the time taken for concentration of a biological substance (such as a medication ) to decrease from its ...
The solution of this differential equation is useful in calculating the concentration after the administration of a single dose of drug via IV bolus injection: = C t is concentration after time t; C 0 is the initial concentration (t=0) K is the elimination rate constant