Search results
Results from the WOW.Com Content Network
MATLAB code given. 1,224 Text Classification 2008 [263] [264] U. Hoffman et al. Heart Disease Data Set Attributed of patients with and without heart disease. 75 attributes given for each patient with some missing values. 303 Text Classification 1988 [265] [266] A. Janosi et al. Breast Cancer Wisconsin (Diagnostic) Dataset
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
time-series-classification (Java) a package for time series classification using DTW in Weka. The DTW suite provides Python and R packages with a comprehensive coverage of the DTW algorithm family members, including a variety of recursion rules (also called step patterns), constraints, and substring matching.
Panel data is the general class, a multidimensional data set, whereas a time series data set is a one-dimensional panel (as is a cross-sectional dataset). A data set may exhibit characteristics of both panel data and time series data. One way to tell is to ask what makes one data record unique from the other records.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.
A time series is the sequence of a variable's value over equally spaced periods, such as years or quarters in business applications. [11] To accomplish this, the data must be smoothed, or the random variance of the data must be removed in order to reveal trends in the data.
Time series datasets can also have fewer relationships between data entries in different tables and don't require indefinite storage of entries. [6] The unique properties of time series datasets mean that time series databases can provide significant improvements in storage space and performance over general purpose databases. [ 6 ]