enow.com Web Search

  1. Ads

    related to: chain rule explained for calculus step by step

Search results

  1. Results from the WOW.Com Content Network
  2. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    All extensions of calculus have a chain rule. In most of these, the formula remains the same, though the meaning of that formula may be vastly different. One generalization is to manifolds. In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This ...

  3. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  4. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  5. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    chain rule The chain rule is a formula for computing the derivative of the composition of two or more functions. That is, if f and g are functions, then the chain rule expresses the derivative of their composition f ∘ g (the function which maps x to f(g(x)) ) in terms of the derivatives of f and g and the product of functions as follows:

  6. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  7. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The chain rule has a particularly elegant statement in terms of total derivatives. It says that, for two functions f {\displaystyle f} and g {\displaystyle g} , the total derivative of the composite function f ∘ g {\displaystyle f\circ g} at a {\displaystyle a} satisfies

  8. Faà di Bruno's formula - Wikipedia

    en.wikipedia.org/wiki/Faà_di_Bruno's_formula

    Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno (1855, 1857), although he was not the first to state or prove the formula.

  9. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    2.3 Proof using the reciprocal rule or chain rule. ... In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two ...

  1. Ads

    related to: chain rule explained for calculus step by step