Search results
Results from the WOW.Com Content Network
Programming with Big Data in R (pbdR) [1] is a series of R packages and an environment for statistical computing with big data by using high-performance statistical computation. [ 2 ] [ 3 ] The pbdR uses the same programming language as R with S3/S4 classes and methods which is used among statisticians and data miners for developing statistical ...
As an illustration, consider the widely used programming language Java. Up until 2020, Java still relied on a linear congruential generator (LCG) for its PRNG, [6] [7] which is of low quality (see further below). Java support was upgraded with Java 17.
The tidyverse is a collection of open source packages for the R programming language introduced by Hadley Wickham [1] and his team that "share an underlying design philosophy, grammar, and data structures" of tidy data. [2] Characteristic features of tidyverse packages include extensive use of non-standard evaluation and encouraging piping. [3 ...
dplyr is an R package whose set of functions are designed to enable dataframe (a spreadsheet-like data structure) manipulation in an intuitive, user-friendly way. It is one of the core packages of the popular tidyverse set of packages in the R programming language. [1]
R is a programming language for statistical computing and data visualization.It has been adopted in the fields of data mining, bioinformatics and data analysis. [9]The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data.
A random seed (or seed state, or just seed) is a number (or vector) used to initialize a pseudorandom number generator.. A pseudorandom number generator's number sequence is completely determined by the seed: thus, if a pseudorandom number generator is later reinitialized with the same seed, it will produce the same sequence of numbers.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Reverse accumulation is more efficient than forward accumulation for functions f : R n → R m with n ≫ m as only m sweeps are necessary, compared to n sweeps for forward accumulation. Backpropagation of errors in multilayer perceptrons, a technique used in machine learning , is a special case of reverse accumulation.