enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In particular, the learner is expected to find efficient functions (time and space requirements bounded to a polynomial of the example size), and the learner itself must implement an efficient procedure (requiring an example count bounded to a polynomial of the concept size, modified by the approximation and likelihood bounds).

  4. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    Active learning: Instead of assuming that all of the training examples are given at the start, active learning algorithms interactively collect new examples, typically by making queries to a human user. Often, the queries are based on unlabeled data, which is a scenario that combines semi-supervised learning with active learning.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...

  6. Active learning (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Active_learning_(machine...

    In such a scenario, learning algorithms can actively query the user/teacher for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning.

  7. Multiple instance learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_Instance_Learning

    Depending on the type and variation in training data, machine learning can be roughly categorized into three frameworks: supervised learning, unsupervised learning, and reinforcement learning. Multiple instance learning (MIL) falls under the supervised learning framework, where every training instance has a label, either discrete or real valued ...

  8. Simula - Wikipedia

    en.wikipedia.org/wiki/Simula

    Simula is considered the first object-oriented programming language. As its name suggests, the first Simula version by 1962 was designed for doing simulations; Simula 67 though was designed to be a general-purpose programming language [3] and provided the framework for many of the features of object-oriented languages today.

  9. Real-Time Object-Oriented Modeling - Wikipedia

    en.wikipedia.org/wiki/Real-Time_Object-Oriented...

    Real-Time Object-Oriented Modeling (ROOM) is a domain-specific language. ROOM was developed in the early 1990s for modeling real-time systems. [1] The initial focus was on telecommunications, even though ROOM can be applied to any event-driven real-time system.