Search results
Results from the WOW.Com Content Network
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .
The resulting limit is the conditional probability distribution of Y given X and exists when the denominator, the probability density (), is strictly positive. It is tempting to define the undefined probability P ( A ∣ X = x ) {\displaystyle P(A\mid X=x)} using limit ( 1 ), but this cannot be done in a consistent manner.
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
The value x = 0.5 is an atom of the distribution of X, thus, the corresponding conditional distribution is well-defined and may be calculated by elementary means (the denominator does not vanish); the conditional distribution of Y given X = 0.5 is uniform on (2/3, 1). Measure theory leads to the same result.
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
In words: the variance of Y is the sum of the expected conditional variance of Y given X and the variance of the conditional expectation of Y given X. The first term captures the variation left after "using X to predict Y", while the second term captures the variation due to the mean of the prediction of Y due to the randomness of X.
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel .
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).