Search results
Results from the WOW.Com Content Network
GDDR3 SDRAM (Graphics Double Data Rate 3 SDRAM) is a type of DDR SDRAM specialized for graphics processing units (GPUs) offering less access latency and greater device bandwidths. [ compared to? ] Its specification was developed by ATI Technologies in collaboration with DRAM vendors including Elpida Memory , Hynix Semiconductor , Infineon ...
Many modern GPUs rely on VRAM. In contrast, a GPU that does not use VRAM, and relies instead on system RAM, is said to have a unified memory architecture, or shared graphics memory. System RAM and VRAM have been segregated due to the bandwidth requirements of GPUs, [2] [3] and to achieve lower latency, since VRAM is physically closer to the GPU ...
Whenever an SM executes a thread block, all the threads inside the thread block are executed at the same time. Hence to free a memory of a thread block inside the SM, it is critical that the entire set of threads in the block have concluded execution. Each thread block is divided in scheduled units known as a warp.
Because the GPU has access to every draw operation, it can analyze data in these forms quickly, whereas a CPU must poll every pixel or data element much more slowly, as the speed of access between a CPU and its larger pool of random-access memory (or in an even worse case, a hard drive) is slower than GPUs and video cards, which typically ...
Graphics Double Data Rate 7 Synchronous Dynamic Random-Access Memory (GDDR7 SDRAM) is a type of synchronous graphics random-access memory (SGRAM) specified by the JEDEC Semiconductor Memory Standard, with a high bandwidth, "double data rate" interface, designed for use in graphics cards, game consoles, and high-performance computing.
Greater RTL customization of hardware designs allows emerging architectures such as in-memory computing, transport triggered architectures (TTA) and networks-on-chip (NoC) to further benefit from increased locality of data to execution context, thereby reducing computing and communication latency between modules and functional units.
Increasing memory bandwidth, even while increasing memory latency, may improve the performance of a computer system with multiple processors and/or multiple execution threads. Higher bandwidth will also boost performance of integrated graphics processors that have no dedicated video memory but use regular RAM as VRAM .
Graphics DDR SDRAM (GDDR SDRAM) is a type of synchronous dynamic random-access memory (SDRAM) specifically designed for applications requiring high bandwidth, [1] e.g. graphics processing units (GPUs).