Search results
Results from the WOW.Com Content Network
Nonmetals tend to gain electrons during chemical reactions, in contrast to metals which tend to donate electrons. This behavior is related to the stability of electron configurations in the noble gases, which have complete outer shells as summarized by the duet and octet rules of thumb, more correctly explained in terms of valence bond theory. [67]
Valence electrons are the outermost electrons of an atom and are normally the only electrons that participate in chemical bonding. Atoms with full valence electron shells are extremely stable and therefore do not tend to form chemical bonds and have little tendency to gain or lose electrons. [35]
From left to right in the periodic table, the nonmetals can be divided into the reactive nonmetals and the noble gases. The reactive nonmetals near the metalloids show some incipient metallic character, such as the metallic appearance of graphite, black phosphorus, selenium and iodine. The noble gases are almost completely inert.
It is the softest of the commonly recognised metalloids. Tellurium reacts with boiling water, or when freshly precipitated even at 50 °C, to give the dioxide and hydrogen: Te + 2 H 2 O → TeO 2 + 2 H 2. It has a melting point of 450 °C and a boiling point of 988 °C. Tellurium has a polyatomic (CN 2) hexagonal crystalline structure.
Hydrogen gas is a reducing agent when it reacts with non-metals and an oxidizing agent when it reacts with metals. 2 Li (s) + H 2(g) → 2 LiH (s) [ a ] Hydrogen (whose reduction potential is 0.0) acts as an oxidizing agent because it accepts an electron donation from the reducing agent lithium (whose reduction potential is -3.04), which causes ...
Generally, nonmetals have more positive E ea than metals. Atoms whose anions are more stable than neutral atoms have a greater E ea. Chlorine most strongly attracts extra electrons; neon most weakly attracts an extra electron. The electron affinities of the noble gases have not been conclusively measured, so they may or may not have slightly ...
Recently, [when?] xenon has been shown to produce a wide variety of compounds of the type XeO n X 2 where n is 1, 2 or 3 and X is any electronegative group, such as CF 3, C(SO 2 CF 3) 3, N(SO 2 F) 2, N(SO 2 CF 3) 2, OTeF 5, O(IO 2 F 2), etc.; the range of compounds is impressive, similar to that seen with the neighbouring element iodine ...
Nonmetals have a wide range of properties, for instance the nonmetal diamond is the hardest known material, while the nonmetal molybdenum disulfide is a solid lubricants used in space. [47] There are some properties specific to them not having electrons at the Fermi energy.