Ads
related to: tangent function vertical asymptotes meaning in calculus 2 practice
Search results
Results from the WOW.Com Content Network
Vertical tangent on the function ƒ(x) at x = c. In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.
The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times In analytic geometry , an asymptote ( / ˈ æ s ɪ m p t oʊ t / ) of a curve is a line such that the distance between the curve and the line approaches zero as one or ...
If f(n) = n 2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n 2. The function f(n) is said to be "asymptotically equivalent to n 2, as n → ∞". This is often written symbolically as f (n) ~ n 2, which is read as "f(n) is asymptotic to n 2". An example of an important asymptotic result is the prime number ...
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
In algebraic geometry, a non singular point of an algebraic curve is an inflection point if and only if the intersection number of the tangent line and the curve (at the point of tangency) is greater than 2. The main motivation of this different definition, is that otherwise the set of the inflection points of a curve would not be an algebraic set.
The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.
An osculating curve from a given family of curves is a curve that has the highest possible order of contact with a given curve at a given point; for instance a tangent line is an osculating curve from the family of lines, and has first-order contact with the given curve; an osculating circle is an osculating curve from the family of circles ...
The condition ∂R / ∂y ≠ 0 means that (a, b) is a regular point of the implicit curve of implicit equation R(x, y) = 0 where the tangent is not vertical. In a less technical language, implicit functions exist and can be differentiated, if the curve has a non-vertical tangent. [2]: §11.5
Ads
related to: tangent function vertical asymptotes meaning in calculus 2 practice