Search results
Results from the WOW.Com Content Network
Radon-222 (222 Rn, Rn-222, historically radium emanation or radon) is the most stable isotope of radon, with a half-life of approximately 3.8 days. It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of radium-226.
The Bateman equation predicts the relative quantities of all the isotopes that compose a given decay chain once that decay chain has proceeded long enough for some of its daughter products to have reached the stable (i.e., nonradioactive) end of the chain. A decay chain that has reached this state, which may require billions of years, is said ...
Radon mostly appears with the radium/uranium series (decay chain) (222 Rn), and marginally with the thorium series (220 Rn). The element emanates naturally from the ground, and some building materials, all over the world, wherever traces of uranium or thorium are found, and particularly in regions with soils containing granite or shale , which ...
The critical mass for any material is the smallest amount needed for a sustained nuclear chain reaction. Moreover, different isotopes have different critical masses, and the critical mass for many radioactive isotopes is infinite, because the mode of decay of one atom cannot induce similar decay of more than one neighboring atom.
Uranium-238 (238 U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239.
Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature. Uranium-235 has a half-life of 703.8 million years.
A significant amount of zirconium is formed by the fission process; some of this consists of short-lived radionuclides (95 Zr and 97 Zr which decay to molybdenum), while almost 10% of the fission products mixture after years of decay consists of five stable or nearly stable isotopes of zirconium plus 93 Zr with a halflife of 1.53 million years ...
There are 39 known isotopes of radon (86 Rn), from 193 Rn to 231 Rn; all are radioactive.The most stable isotope is 222 Rn with a half-life of 3.8235 days, which decays into 218 Po