enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Index of a subgroup - Wikipedia

    en.wikipedia.org/wiki/Index_of_a_subgroup

    A subgroup H of finite index in a group G (finite or infinite) always contains a normal subgroup N (of G), also of finite index. In fact, if H has index n, then the index of N will be some divisor of n! and a multiple of n; indeed, N can be taken to be the kernel of the natural homomorphism from G to the permutation group of the left (or right ...

  3. Glossary of group theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_group_theory

    A subgroup of a group G is a subset H of the elements of G that itself forms a group when equipped with the restriction of the group operation of G to H × H. A subset H of a group G is a subgroup of G if and only if it is nonempty and closed under products and inverses, that is, if and only if for every a and b in H, ab and a −1 are also in ...

  4. Characteristic subgroup - Wikipedia

    en.wikipedia.org/wiki/Characteristic_subgroup

    A subgroup H of a group G is called a characteristic subgroup if for every automorphism φ of G, one has φ(H) ≤ H; then write H char G. It would be equivalent to require the stronger condition φ(H) = H for every automorphism φ of G, because φ −1 (H) ≤ H implies the reverse inclusion H ≤ φ(H).

  5. Lagrange's theorem (group theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_theorem_(group...

    The subgroup H contains only 0 and 4, and is isomorphic to /. There are four left cosets of H: H itself, 1+H, 2+H, and 3+H (written using additive notation since this is an additive group). Together they partition the entire group G into equal-size, non-overlapping sets. Thus the index [G : H] is 4.

  6. Subgroup - Wikipedia

    en.wikipedia.org/wiki/Subgroup

    A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.

  7. Polycyclic group - Wikipedia

    en.wikipedia.org/wiki/Polycyclic_group

    G 0 is the trivial subgroup; G i is a normal subgroup of G i+1 (for every i between 0 and n - 1) and the quotient group G i+1 / G i is a cyclic group (for every i between 0 and n - 1) A metacyclic group is a polycyclic group with n ≤ 2, or in other words an extension of a cyclic group by a cyclic group.

  8. Nielsen–Schreier theorem - Wikipedia

    en.wikipedia.org/wiki/Nielsen–Schreier_theorem

    The free group G = π 1 (X) has n = 2 generators corresponding to loops a,b from the base point P in X.The subgroup H of even-length words, with index e = [G : H] = 2, corresponds to the covering graph Y with two vertices corresponding to the cosets H and H' = aH = bH = a −1 H = b − 1 H, and two lifted edges for each of the original loop-edges a,b.

  9. Core (group theory) - Wikipedia

    en.wikipedia.org/wiki/Core_(group_theory)

    A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action. The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.