Search results
Results from the WOW.Com Content Network
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
From the equation it is shown that for a flow with a large Reynolds Number there will be a correspondingly small convective boundary layer compared to the vessel’s characteristic length. [5] By knowing the Reynolds and Womersley numbers for a given flow it is possible to calculate both the transient and the convective boundary layer ...
The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar to turbulent flow and is used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full-size version.
In case of 1-D Reynolds equation several analytical or semi-analytical solutions are available. In 1916 Martin obtained a closed form solution [5] for a minimum film thickness and pressure for a rigid cylinder and plane geometry. This solution is not accurate for the cases when the elastic deformation of the surfaces contributes considerably to ...
Reynolds transport theorem can be expressed as follows: [1] [2] [3] = + () in which n(x,t) is the outward-pointing unit normal vector, x is a point in the region and is the variable of integration, dV and dA are volume and surface elements at x, and v b (x,t) is the velocity of the area element (not the flow velocity).
In the situation of laminar flow in circular tubes, several dimensionless numbers are used such as Nusselt number, Reynolds number, and Prandtl number. The commonly used equation is =. Natural or free convection is a function of Grashof and Prandtl numbers. The complexities of free convection heat transfer make it necessary to mainly use ...
Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order , the Damköhler number for a convective flow system is defined as:
The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition , whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds . [ 1 ]