enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both. This list includes these:

  3. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as prisms ...

  4. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  5. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  6. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    For every convex polyhedron, there exists a dual polyhedron having faces in place of the original's vertices and vice versa, and; the same number of edges. The dual of a convex polyhedron can be obtained by the process of polar reciprocation. [34] Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again.

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}: As spherical tilings , these star forms overlap the sphere multiple times, called its density , being 3 or 7 for these forms.

  8. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    5-orthoplex, Rectified 5-orthoplex, Truncated 5-orthoplex, Cantellated 5-orthoplex, Runcinated 5-orthoplex Prismatic uniform 5-polytope For each polytope of dimension n , there is a prism of dimension n +1.

  9. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    They are 2 infinite classes of prisms and antiprisms, the convex polyhedrons as in 5 Platonic solids and 13 Archimedean solids—2 quasiregular and 11 semiregular— the non-convex star polyhedra as in 4 Kepler–Poinsot polyhedra and 53 uniform star polyhedra—14 quasiregular and 39 semiregular.