Search results
Results from the WOW.Com Content Network
The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N = A − Z. [2] The mass number is written either after the element name or as a superscript to the left of an element's symbol.
The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons. For an ordinary atom which contains protons, neutrons and electrons, the sum of the atomic number Z and the neutron number N gives the atom's atomic mass number A.
The chemists used an "atomic mass unit" (amu) scale such that the natural mixture of oxygen isotopes had an atomic mass 16, while the physicists assigned the same number 16 to only the atomic mass of the most common oxygen isotope (16 O, containing eight protons and eight neutrons).
An explanation of the superscripts and subscripts seen in atomic number notation. Atomic number is the number of protons, and therefore also the total positive charge, in the atomic nucleus. For an ordinary atom which contains protons, neutrons and electrons, the sum of the atomic number Z and the neutron number N gives the atom's atomic mass ...
The number of nucleons (both protons and neutrons) in the nucleus is the atom's mass number, and each isotope of a given element has a different mass number. For example, carbon-12 , carbon-13 , and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13, and 14, respectively.
where A = Atomic mass number (the number of protons Z, plus the number of neutrons N) and r 0 = 1.25 fm = 1.25 × 10 −15 m. In this equation, the "constant" r 0 varies by 0.2 fm, depending on the nucleus in question, but this is less than 20% change from a constant. [20]
Formerly called atomic/molecular weight. Example: A r (Cl) = 35.453. Both quantities depend on the nuclidic composition. relative molecular mass: M r: Ratio of the average mass per molecule or specified entity of a substance to 1/12 of the mass of an atom of the nuclide 12 C number of molecules or other elementary entities: N
where mass number A equals to the sum of atomic number Z and number of neutrons N, and m p, m n, a V, a S, a C, a A are constants, one can see that the mass depends on Z and N non-linearly, even for a constant mass number. For odd A, it is admitted that δ = 0 and the mass dependence on Z is convex (or on N or N − Z, it does not matter for a ...