enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    Therefore mobility is a very important parameter for semiconductor materials. Almost always, higher mobility leads to better device performance, with other things equal. Semiconductor mobility depends on the impurity concentrations (including donor and acceptor concentrations), defect concentration, temperature, and electron and hole ...

  3. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    Crystalline solids and molecular solids are two opposite extreme cases of materials that exhibit substantially different transport mechanisms. While in atomic solids transport is intra-molecular, also known as band transport, in molecular solids the transport is inter-molecular, also known as hopping transport.

  4. Strain engineering - Wikipedia

    en.wikipedia.org/wiki/Strain_engineering

    Strain engineering refers to a general strategy employed in semiconductor manufacturing to enhance device performance. Performance benefits are achieved by modulating strain, as one example, in the transistor channel, which enhances electron mobility (or hole mobility) and thereby conductivity through the channel. Another example are ...

  5. Semiconductor device - Wikipedia

    en.wikipedia.org/wiki/Semiconductor_device

    After the war, William Shockley decided to attempt the building of a triode-like semiconductor device. He secured funding and lab space, and went to work on the problem with Brattain and John Bardeen. The key to the development of the transistor was the further understanding of the process of the electron mobility in a semiconductor. It was ...

  6. Hot-carrier injection - Wikipedia

    en.wikipedia.org/wiki/Hot-carrier_injection

    The term "hot electron" comes from the effective temperature term used when modelling carrier density (i.e., with a Fermi-Dirac function) and does not refer to the bulk temperature of the semiconductor (which can be physically cold, although the warmer it is, the higher the population of hot electrons it will contain all else being equal).

  7. International Technology Roadmap for Semiconductors - Wikipedia

    en.wikipedia.org/wiki/International_Technology...

    For several years, the Semiconductor Industry Association (SIA) gave this responsibility of coordination to the United States, which led to the creation of an American style roadmap, the National Technology Roadmap for Semiconductors (NTRS). [5] The first semiconductor roadmap, published by the SIA in 1993.

  8. High-electron-mobility transistor - Wikipedia

    en.wikipedia.org/wiki/High-electron-mobility...

    The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.

  9. 45 nm process - Wikipedia

    en.wikipedia.org/wiki/45_nm_process

    At the end of 2008, SMIC was the first China-based semiconductor company to move to 45 nm, having licensed the bulk 45 nm process from IBM. In 2008, TSMC moved on to a 40 nm process. Many critical feature sizes are smaller than the wavelength of light used for lithography (i.e., 193 nm and 248 nm).