enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    Several researchers have investigated algorithms for constructing the Dedekind–MacNeille completion of a finite partially ordered set. The Dedekind–MacNeille completion may be exponentially larger than the partial order it comes from, [12] and the time bounds for such algorithms are generally stated in an output-sensitive way, depending ...

  3. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.

  4. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    Using the standard ZFC axioms for set theory, every Dedekind-finite set is also finite, but this implication cannot be proved in ZF (Zermelo–Fraenkel axioms without the axiom of choice) alone. The axiom of countable choice , a weak version of the axiom of choice, is sufficient to prove this equivalence.

  5. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]

  6. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A set X is Dedekind-infinite if there exists a proper subset Y of X with |X| = |Y|, and Dedekind-finite if such a subset does not exist. The finite cardinals are just the natural numbers, in the sense that a set X is finite if and only if |X| = |n| = n for some natural number n. Any other set is infinite.

  7. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    Richard Dedekind showed that every number field possesses an integral basis, allowing him to define the discriminant of an arbitrary number field. [16] The definition of the discriminant of a general algebraic number field, K, was given by Dedekind in 1871. [16] At this point, he already knew the relationship between the discriminant and ...

  8. Dedekind-finite ring - Wikipedia

    en.wikipedia.org/wiki/Dedekind-finite_ring

    In mathematics, a ring is said to be a Dedekind-finite ring if ab = 1 implies ba = 1 for any two ring elements a and b. In other words, all one-sided inverses in the ring are two-sided. These rings have also been called directly finite rings [1] and von Neumann finite rings. [2]

  9. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    Dedekind 1. Richard Dedekind 2. A Dedekind-infinite set is a set that can be put into a one-to-one correspondence with one of its proper subsets, indicating a type of infinity; a Dedekind-finite set is a set that is not Dedekind-infinite. (These are also spelled without the hyphen, as "Dedekind finite" and "Dedekind infinite".) def