enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.

  3. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    Several researchers have investigated algorithms for constructing the Dedekind–MacNeille completion of a finite partially ordered set. The Dedekind–MacNeille completion may be exponentially larger than the partial order it comes from, [12] and the time bounds for such algorithms are generally stated in an output-sensitive way, depending ...

  4. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    Using the standard ZFC axioms for set theory, every Dedekind-finite set is also finite, but this implication cannot be proved in ZF (Zermelo–Fraenkel axioms without the axiom of choice) alone. The axiom of countable choice , a weak version of the axiom of choice, is sufficient to prove this equivalence.

  5. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    Axiom 4, which requires the order to be Dedekind-complete, implies the Archimedean property. The axiom is crucial in the characterization of the reals. For example, the totally ordered field of the rational numbers Q satisfies the first three axioms, but not the fourth. In other words, models of the rational numbers are also models of the first ...

  6. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A set X is Dedekind-infinite if there exists a proper subset Y of X with |X| = |Y|, and Dedekind-finite if such a subset does not exist. The finite cardinals are just the natural numbers, in the sense that a set X is finite if and only if |X| = |n| = n for some natural number n. Any other set is infinite.

  7. Richard Dedekind - Wikipedia

    en.wikipedia.org/wiki/Richard_Dedekind

    For example, the square root of 2 defines all the nonnegative numbers whose squares are less than 2 and the negative numbers into the lesser class, and the positive numbers whose squares are greater than 2 into the greater class. Every location on the number line continuum contains either a rational or an irrational number.

  8. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    The ring = of algebraic integers in a number field K is Noetherian, integrally closed, and of dimension one: to see the last property, observe that for any nonzero prime ideal I of R, R/I is a finite set, and recall that a finite integral domain is a field; so by (DD4) R is a Dedekind domain. As above, this includes all the examples considered ...

  9. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.