Search results
Results from the WOW.Com Content Network
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [ 1 ] [ 2 ] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.
One of the most commonly encountered CRC polynomials is known as CRC-32, used by (among others) Ethernet, FDDI, ZIP and other archive formats, and PNG image format. Its polynomial can be written msbit-first as 0x04C11DB7, or lsbit-first as 0xEDB88320.
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages. Checksum schemes include parity bits, check digits, and longitudinal redundancy checks.
By far the most popular FCS algorithm is a cyclic redundancy check (CRC), used in Ethernet and other IEEE 802 protocols with 32 bits, in X.25 with 16 or 32 bits, in HDLC with 16 or 32 bits, in Frame Relay with 16 bits, [3] in Point-to-Point Protocol (PPP) with 16 or 32 bits, and in other data link layer protocols.
The checksum algorithms most used in practice, such as Fletcher's checksum, Adler-32, and cyclic redundancy checks (CRCs), address these weaknesses by considering not only the value of each word but also its position in the sequence. This feature generally increases the cost of computing the checksum.
The CRC 'checksum' is formed by the coefficients of the remainder polynomial () whose degree is strictly less than . The quotient polynomial () is of no interest. Using modulo operation, it can be stated that = ().
Over () (i.e. with binary BCH codes), this process is indistinguishable from appending a cyclic redundancy check, and if a systematic binary BCH code is used only for error-detection purposes, we see that BCH codes are just a generalization of the mathematics of cyclic redundancy checks.