enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    This data can be plotted on a graph with ln K eq on the y-axis and ⁠ 1 / T ⁠ on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation

  3. Delta potential - Wikipedia

    en.wikipedia.org/wiki/Delta_potential

    The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.

  4. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The graph of the Dirac delta is usually thought of as following the whole x-axis and the positive y-axis. [5]: 174 The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point.

  5. Isobaric process - Wikipedia

    en.wikipedia.org/wiki/Isobaric_process

    That is, during isobaric expansion the gas does positive work, or equivalently, the environment does negative work. Restated, the gas does positive work on the environment. If heat is added to the system, then Q > 0. That is, during isobaric expansion/heating, positive heat is added to the gas, or equivalently, the environment receives negative ...

  6. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    For k = 1 the density has a finite negative slope at x = 0. For k = 2 the density has a finite positive slope at x = 0. As k goes to infinity, the Weibull distribution converges to a Dirac delta distribution centered at x = λ. Moreover, the skewness and coefficient of variation depend only on the shape parameter.

  7. ΔP - Wikipedia

    en.wikipedia.org/wiki/ΔP

    Given that the head loss h f expresses the pressure loss Δp as the height of a column of fluid, Δ p = ρ ⋅ g ⋅ h f {\displaystyle \Delta p=\rho \cdot g\cdot h_{f}} where ρ is the density of the fluid.

  8. Positive and negative parts - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative_parts

    The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function. Analogously to this decomposition of a function, one may decompose a signed measure into positive and negative parts — see the Hahn decomposition theorem .

  9. Calculus on finite weighted graphs - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_finite...

    The weighted graph Laplacian: () is a well-studied operator in the graph setting. Mimicking the relationship div ⁡ ( ∇ f ) = Δ f {\displaystyle \operatorname {div} (\nabla f)=\Delta f} of the Laplace operator in the continuum setting, the weighted graph Laplacian can be derived for any vertex x i ∈ V {\displaystyle x_{i}\in V} as: