Search results
Results from the WOW.Com Content Network
Burke-Shaw chaotic attractor [8] continuous: real: 3: 2: Chen chaotic attractor [9] continuous: real: 3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and ...
In a one-way time transfer system, one end transmits its current time over some communication channel to one or more receivers. [4]: 116 The receivers will, at reception, decode the message, and either just report the time, or adjust a local clock which can provide hold-over time reports in between the reception of messages. The advantage of ...
A discrete dynamical system, discrete-time dynamical system is a tuple (T, M, Φ), where M is a manifold locally diffeomorphic to a Banach space, and Φ is a function. When T is taken to be the integers, it is a cascade or a map. If T is restricted to the non-negative integers we call the system a semi-cascade. [14]
Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. Thus a non-time variable jumps from one value to another as time moves from one time period to the next.
Block diagram illustrating the superposition principle and time invariance for a deterministic continuous-time single-input single-output system. The system satisfies the superposition principle and is time-invariant if and only if y 3 (t) = a 1 y 1 (t – t 0) + a 2 y 2 (t – t 0) for all time t, for all real constants a 1, a 2, t 0 and for all inputs x 1 (t), x 2 (t). [1]
March 2024) In probability theory and statistics , diffusion processes are a class of continuous-time Markov process with almost surely continuous sample paths. Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems.
Continuous dynamic systems (like physical systems with material objects moving in space) are characterized by state variables the values of which change continuously, while the state variable values of discrete dynamic systems (like predator-prey ecosystems) "jump", that is, they are changed at discrete time steps only. In continuous simulation ...
The bilinear transform is a first-order Padé approximant of the natural logarithm function that is an exact mapping of the z-plane to the s-plane.When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z transform of the discrete-time sequence with the ...