enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    The magnitude of Earth's magnetic field at its surface ranges from 25 to 65 μT (0.25 to 0.65 G). [3] As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11° with respect to Earth's rotational axis, as if there were an enormous bar magnet placed at that angle through the center of Earth.

  3. Dynamo theory - Wikipedia

    en.wikipedia.org/wiki/Dynamo_theory

    The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.

  4. Ionosphere - Wikipedia

    en.wikipedia.org/wiki/Ionosphere

    Within approximately ± 20 degrees of the magnetic equator, is the equatorial anomaly. [26] [27] It is the occurrence of a trough in the ionization in the F 2 layer at the equator and crests at about 17 degrees in magnetic latitude. [26] The Earth's magnetic field lines are horizontal at the magnetic equator.

  5. Atmosphere - Wikipedia

    en.wikipedia.org/wiki/Atmosphere

    Earth's magnetic field helps to prevent this, as, normally, the solar wind would greatly enhance the escape of hydrogen. However, over the past 3 billion years Earth may have lost gases through the magnetic polar regions due to auroral activity, including a net 2% of its atmospheric oxygen. [10]

  6. Atmospheric circulation - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_circulation

    Atmospheric circulation is the large-scale movement of air and together with ocean circulation is the means by which thermal energy is redistributed on the surface of the Earth. The Earth's atmospheric circulation varies from year to year, but the large-scale structure of its circulation remains fairly constant.

  7. Sun's magnetic field may form close to the surface. This ...

    www.aol.com/news/suns-magnetic-field-may-form...

    Vasil and his team developed new models of the interaction between the sun’s magnetic field and the flow of plasma, which varies at different latitudes during an 11-year cycle.

  8. Earth - Wikipedia

    en.wikipedia.org/wiki/Earth

    The poles of the dipole are located close to Earth's geographic poles. At the equator of the magnetic field, the magnetic-field strength at the surface is 3.05 × 10 −5 T, with a magnetic dipole moment of 7.79 × 10 22 Am 2 at epoch 2000, decreasing nearly 6% per century (although it still remains stronger than its long time average). [147]

  9. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    These concepts can be quickly "translated" to their mathematical form. For example, the number of field lines through a given surface is the surface integral of the magnetic field. [10]: 237 Various phenomena "display" magnetic field lines as though the field lines were physical phenomena.