Search results
Results from the WOW.Com Content Network
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Langlands's proof of the functional equation for Eisenstein series was 337 pages long. 1983 Trichotomy theorem. Gorenstein and Lyons's proof for the case of rank at least 4 was 731 pages long, and Aschbacher's proof of the rank 3 case adds another 159 pages, for a total of 890 pages. 1983 Selberg trace formula. Hejhal's proof of a general form ...
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
In new research, mathematicians have narrowed down one of the biggest outstanding problems in math. Skip to main content. 24/7 Help. For premium support please call: 800-290-4726 more ways to ...
Fermat's Last Theorem considers solutions to the Fermat equation: a n + b n = c n with positive integers a, b, and c and an integer n greater than 2. There are several generalizations of the Fermat equation to more general equations that allow the exponent n to be a negative integer or rational, or to consider three different exponents.
Modifying the condition in this way can make a problem either harder or easier to solve (intuitively, it is harder to justify a positive answer but might be easier to justify a negative one). Kurtz and Simon [ 34 ] proved that the universally quantified problem is, in fact, undecidable and even higher in the arithmetical hierarchy ...
The value ζ(0) = −1/2 is not determined by the functional equation, but is the limiting value of ζ(s) as s approaches zero. The functional equation also implies that the zeta function has no zeros with negative real part other than the trivial zeros, so all nontrivial zeros lie in the critical strip where s has real part between 0 and 1.