Search results
Results from the WOW.Com Content Network
The Remez algorithm or Remez exchange algorithm, published by Evgeny Yakovlevich Remez in 1934, is an iterative algorithm used to find simple approximations to functions, specifically, approximations by functions in a Chebyshev space that are the best in the uniform norm L ∞ sense. [1]
When using approximation equations or algorithms, especially when using finitely many digits to represent real numbers (which in theory have infinitely many digits), one of the goals of numerical analysis is to estimate computation errors. [5] Computation errors, also called numerical errors, include both truncation errors and roundoff errors.
Several progressively more accurate approximations of the step function. An asymmetrical Gaussian function fit to a noisy curve using regression.. In general, a function approximation problem asks us to select a function among a well-defined class [citation needed] [clarification needed] that closely matches ("approximates") a target function [citation needed] in a task-specific way.
Rational approximation may refer to: Diophantine approximation , the approximation of real numbers by rational numbers Padé approximation , the approximation of functions obtained by set of Padé approximants
The secant method can be interpreted as a method in which the derivative is replaced by an approximation and is thus a quasi-Newton method. If we compare Newton's method with the secant method, we see that Newton's method converges faster (order 2 against order the golden ratio φ ≈ 1.6). [ 2 ]
Simple rational approximation (SRA) is a subset of interpolating methods using rational functions. Especially, SRA interpolates a given function with a specific rational function whose poles and zeros are simple, which means that there is no multiplicity in poles and zeros.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
There is an intimate connection between regular continued fractions and Padé tables with normal approximants along the main diagonal: the "stairstep" sequence of Padé approximants R 0,0, R 1,0, R 1,1, R 2,1, R 2,2, ... is normal if and only if that sequence coincides with the successive convergents of a regular continued fraction.