Search results
Results from the WOW.Com Content Network
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .
A graph of a parabola with a removable singularity at x = 2. In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.
Conversely, by a differentiation theorem of Lebesgue, the jump function f is uniquely determined by the properties: [14] (1) being non-decreasing and non-positive; (2) having given jump data at its points of discontinuity x n; (3) satisfying the boundary condition f (a) = 0; and (4) having zero derivative almost everywhere.
where: δ(x) is the Dirac delta function, also called the unit impulse.The first derivative of δ(x) is also called the unit doublet.The function () is the Heaviside step function: H(x) = 0 for x < 0 and H(x) = 1 for x > 0.
The above example simply states that the function takes the value () for all x values larger than a. With this, all the forces acting on a beam can be added, with their respective points of action being the value of a. A particular case is the unit step function,
Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams.Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading.
The above equation is obtained by replacing the spatial and temporal derivatives in the previous first order hyperbolic equation using forward differences. Corrector step: In the corrector step, the predicted value u i p {\displaystyle u_{i}^{p}} is corrected according to the equation