Search results
Results from the WOW.Com Content Network
In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular ), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and δ S +1 , where δ S is the silver ratio, √ 2 +1.
They are the cuboctahedron, truncated octahedron, truncated cube, rhombicuboctahedron, icosidodecahedron, truncated cuboctahedron, truncated icosahedron, truncated dodecahedron, and the truncated tetrahedron. [10] The dual polyhedron of an Archimedean solid is a Catalan solid. [1]
Download QR code; Print/export ... Truncated cube: Truncated tesseract: Truncated 5-cube: Truncated 6-cube: Truncated 7-cube: Truncated 8-cube: Coxeter diagram ...
The name truncated cuboctahedron, given originally by Johannes Kepler, is misleading: an actual truncation of a cuboctahedron has rectangles instead of squares; however, this nonuniform polyhedron is topologically equivalent to the Archimedean solid unrigorously named truncated cuboctahedron. Alternate interchangeable names are:
Types of truncation on a square, {4}, showing red original edges, and new truncated edges in cyan. A uniform truncated square is a regular octagon, t{4}={8}. A complete truncated square becomes a new square, with a diagonal orientation. Vertices are sequenced around counterclockwise, 1-4, with truncated pairs of vertices as a and b.
In eight-dimensional geometry, a truncated 8-cube is a convex uniform 8-polytope, being a truncation of the regular 8-cube. There are unique 7 degrees of truncation for the 8-cube. Vertices of the truncation 8-cube are located as pairs on the edge of the 8-cube. Vertices of the bitruncated 8-cube are located on the square faces of the 8-cube.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Its dual is the truncated cube. It can be seen as an octahedron with triangular pyramids added to each face; that is, it is the Kleetope of the octahedron. It is also sometimes called a trisoctahedron, or, more fully, trigonal trisoctahedron. Both names reflect that it has three triangular faces for every face of an octahedron.