Search results
Results from the WOW.Com Content Network
A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply. By using this site, ...
In this case, X n = (1 − (1/50) 6) n is the probability that none of the first n monkeys types banana correctly on their first try. Therefore, at least one of infinitely many monkeys will (with probability equal to one) produce a text using the same number of keystrokes as a perfectly accurate human typist copying it from the original.
The next occurrence of that character to the left in P is found, and a shift which brings that occurrence in line with the mismatched occurrence in T is proposed. If the mismatched character does not occur to the left in P, a shift is proposed that moves the entirety of P past the point of mismatch.
Thus, the palindrome at Center will run exactly up to the border of the "Old" palindrome, because the next character will be different than the one inside the palindrome at MirroredCenter. For example, if the string was "ababc", the "Old" palindrome could be "bab" with the Center being the second "b" and the MirroredCenter being the first "b".