enow.com Web Search

  1. Ad

    related to: laplace of second order derivative fxy equation calculator formula cheat sheet

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  3. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  4. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The Laplace–Beltrami operator also can be generalized to an operator (also called the Laplace–Beltrami operator) which operates on tensor fields, by a similar formula. Another generalization of the Laplace operator that is available on pseudo-Riemannian manifolds uses the exterior derivative , in terms of which the "geometer's Laplacian" is ...

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    In general, derivatives of any order can be calculated using Cauchy's integral formula: [19] () =! () +, where the integration is done numerically. Using complex variables for numerical differentiation was started by Lyness and Moler in 1967. [ 20 ]

  6. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    In the discrete case, the standard central difference approximation of the second derivative is used on a uniform grid. These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables , as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid ...

  7. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation .

  8. Elliptic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Elliptic_partial...

    The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which a i,j is zero if i ≠ j and is one otherwise, and where b i = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish.

  9. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    The symmetry may be broken if the function fails to have differentiable partial derivatives, which is possible if Clairaut's theorem is not satisfied (the second partial derivatives are not continuous). The function f(x, y), as shown in equation , does not have symmetric second derivatives at its origin.

  1. Ad

    related to: laplace of second order derivative fxy equation calculator formula cheat sheet